Long-term outcomes after correction of long coronary lesions using biodegradable vascular scaffolds
https://doi.org/10.51922/2616-633X.2022.6.1.1510
Abstract
Materials and methods. Over the period of 2013 to 2018, endovascular correction of long (more than 25 mm) coronary artery lesions was performed on 80 patients in RSPC “Cardiology”, Minsk. Randomly the patients were divided into 2 groups: experimental group (EG) (n = 40) – endovascular correction with bioresorbable everolimus-eluting vascular scaffold Absorb BVS, and control group (CG) (n = 40) – endovascular correction with everolimus-eluting metallic stent Xience V/ Xience Pro. During further observations we estimated the development of death outcomes (from any reasons and from heart diseases), cases of acute myocardial infarction, incidence of revascularization due to target lesion patency failure, as well as a combined endpoint (all death cases + cases of acute myocardial infarction+ revascularization due to target lesion patency failure). The information about the presence or absence of negative outcomes was collected during the observation via a telephone contact with the patient or their relatives.
Results. In the mean long-term observational period of 86.5 months (interquartile range from 77.0 to 93.0 months) after percutaneous intervention (PCI) total death cases were registered in 7.5% cases for the experimental group and in 5% cases for the control group (CG) (p = 1.00). The combined endpoint (death + myocardial infarction + target lesion revascularization) was registered in 17.5% cases for EG and in 15% cases for CG (p = 1.00). Kaplan-Meier analysis did not reveal statistical significance between the study groups (p = 0.78).
Conclusion. Long lesion correction with biodegradable vascular scaffolds shows similar long-term clinical results in comparison with everolimus-eluting stents. The combined endpoint risk (all death cases + myocardial infarction + revascularization due to target lesion failure) statistically did not differ in long-term period between both groups.
About the Authors
N. StrygoBelarus
R. Luxemburg str. 110b-203, Minsk, 220036
V. Stelmashok
Belarus
R. Luxemburg str. 110b-203, Minsk, 220036
O. Polonetsky
Belarus
R. Luxemburg str. 110b-203, Minsk, 220036
References
1. Belarus v cifrah: statisticheskij spravochnik [Belarus in numbers: statistical compendium]. Minsk, 2019, pp. 1-72. (in Russian).
2. Strygo N. Rentgenoanatomicheskie osobennosti protyazhennyh porazhenij koronarnyh arterij [X-RAY anatomical features of long lesions of coronary arteries]. Kardiologiya v Belarusi, 2019, vol. 11, no. 2, pp. 265-272. (in Russian).
3. Strygo N. Klinicheskoe sostoyanie pacientov posle rentgenoendovaskulyarnoj korrekcii protyazhennyh kriticheskih porazhenij koronarnyh arterij [ Clinical condition of patients after x-ray endovascular correction of extended critical lesions of coronary arteries]. Kardiologiya v Belarusi, 2018, vol. 10, no. 3, pp. 349-356. (in Russian).
4. Kastrati A., Elezi S., Dirschinger J., Hadamitzky M., Neumann F.J., Schomig A. Influence of lesion length on restenosis after coronary stent placement. Am J Cardiol, 1999, vol. 83, pp. 1617-1622.
5. Kobayashi Y., De Gregorio J., Kobayashi N., Akiyama T., Reimers B., Finci L., Di Mario C., Colombo A. Stented segment length as an independent predictor of restenosis. J Am Coll Cardiol, 1999, vol. 34, pp. 651-659.
6. Suh J., Park D.W., Lee J.Y., Jung I.H., Lee S.W., Kim Y.H., Lee C.W., Cheong S.S., Kim J.J., Park S.W., Park S.J. The relationship and threshold of stent length with regard to risk of stent thrombosis after drug-eluting stent implantation. JACC Cardiovasc Interv, 2010, vol. 3, no. 4, pp. 383-389. doi: 10.1016/j.jcin.2009.10.033.
7. Stelmashok V.I., Poloneckij O.L., Petrov YU.P., CHernoglaz P.F., Maksimchik A.V., Bejmanov A.E., Harkevich O.I., Mrochek A.G. Klinicheskie aspekty antegradnoj rekanalizacii hronicheskih okklyuzionnyh porazhenij koronarnyh arterij [Clinical aspects of antegrade recanalization of chronic occlusive lesions of the coronary arteries]. Kardiologiya v Belarusi, 2012, no. 1(20), pp. 3-11. (in Russian).
8. Ormiston J.A., Serruys P.W. Bioabsorbable coronary stents. Circ Cardiovasc Interv, 2009, vol. 2, pp. 255-260.
9. Onuma, Y., Serruys P.W. Bioresorbable scaffold: the advent of a new era in percutaneous coronary and peripheral revascularization? Circulation, 2011, vol. 123, pp. 779-797.
10. McFadden E.P., Stabile E., Regar E., Cheneau E., Ong A.T.L., Kinnaird T., Suddath W.O., Weissman N.J., Torguson R., Kent K.M., Pichard A.D., Satler L.F., Waksman R., Serruys P.W. Late thrombosis in drug-eluting coronary stents after discontinuation of antiplatelet therapy. Lancet, 2004, vol. 364, no. 9444, pp. 1519-1521.
11. Ong A.T., McFadden E.P., Regar E., de Jaegere P.P.T., van Domburg R.T., Serruys P.W. Late angiographic stent thrombosis last events with drug-eluting stents. J Am Coll Cardiol, 2005, vol. 45, no. 12, pp. 2088-2092.
12. Camenzind E., Steg P.G., Wijns W. Stent thrombosis late after implantation of first-generation drug-eluting stents: A cause for concern. Circulation, 2007, vol. 115, no. 11, pp. 1440-1455.
13. Ormiston J.A., Serruys P.W., Regar E., Dudek D., Thuesen L., Webster M.W.I., Onuma Y., Garcia-Garcia H.M., McGreevy R., Veldhof S. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet, 2008, vol. 371, no. 9616, pp. 899-907.
14. Serruys P.W., Onuma Y., Ormiston J.A., de Bruyne B., Regar E., Dudek D., Thuesen L., Smits P.C., Chevalier B., McClean D., Koolen J., Windecker S., Whitbourn R., Meredith I., Dorange C., Veldhof S., Miquel-Hebert K., Rapoza R., García-García H.M. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation, 2010, vol. 122, no. 22, pp. 2301-2312.
15. Stone G.W., Gao R., Kimura T., Kereiakes D.J., Ellis S.G., Onuma Y., Cheong W.-F., Jones-McMeans J., Su X., Zhang Z., Serruys P.W. 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis. Lancet, 2016, vol. 387, no. 10025, pp. 1277-1289.
16. Onuma Y., Serruys P.W., Ormiston J.A., Regar E., Webster M., Thuesen L., Dudek D., Veldhof S., Rapoza R. Three-year results of clinical follow-up after a bioresorbable everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB trial. EuroIntervention, 2010, vol. 6, no. 4, pp. 447-453.
17. Dudek D., Onuma Y., Ormiston J.A., Thuesen L., Miquel-Hebert K., Serruys P.W. Four-year clinical follow-up of the ABSORB everolimus-eluting bioresorbable vascular scaffold in patients with de novo coronary artery disease: the ABSORB trial. Eurointervention, 2012, vol. 7, no. 9, pp. 1060-1061.
18. Serruys P.W., Ormiston J., van Geuns R.-J., de Bruyne B., Dudek D., Christiansen E., Chevalier B., Smits P., McClean D., Koolen J., Windecker S., Whitbourn R., Meredith I., Wasungu L., Ediebah D., Veldhof S., Onuma Y. A Polylactide Bioresorbable Scaffold Eluting Everolimus for Treatment of Coronary Stenosis: 5-Year Follow-Up. J Am Coll Cardiol, 2016, vol. 67, no. 7, pp. 766-776.
19. Diletti R., Serruys P.W., Farooq V., Sudhir K., Dorange C., Miquel-Hebert K., Veldhof S., Rapoza R., Onuma Y., Garcia-Garcia H.M., Chevalier B. ABSORB II randomized controlled trial: a clinical evaluation to compare the safety, efficacy, and performance of the Absorb everolimus-eluting bioresorbable vascular scaffold system against the XIENCE everolimus-eluting coronary stent system in the treatment of subjects with ischemic heart disease caused by de novo native coronary artery lesions: rationale and study design. Am Heart J, 2012, vol. 164, no. 5, pp. 654-663.
20. Chevalier B., Onuma Y., van Boven A.J., Piek J.J., Sabaté M., Helqvist S., Baumbach A., Smits P.C., Kumar R., Wasungu L., Serruys P.W. Randomised comparison of a bioresorbable everolimus-eluting scaffold with a metallic everolimus-eluting stent for ischaemic heart disease caused by de novo native coronary artery lesions: the 2-year clinical outcomes of the ABSORB II trial. EuroIntervention, 2016, vol. 12, no. 9, pp. 1102-1107.
21. Ellis S.G., Kereiakes D.J., Metzger D.C., Caputo R.P., Rizik D.G., Teirstein P.S., Litt M.R., Kini A., Kabour A., Marx S.O., Popma J.J., McGreevy R., Zhang Z., Simonton C., Stone G.W. Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease. N Engl J Med, 2015, vol. 373, no. 20, pp. 1905-1915.
22. Strygo N., Polonetsky O., Stelmashok V. Osobennosti primeneniya biodegradiruemyh sosudistyh skaffoldov u pacientov s protyazhennymi porazheniyami koronarnyh arterij [Special aspects of biodegradable vascular scaffolds usage in patients with long coronary artery lesions]. Kardiologiya v Belarusi, 2014, no. 4(35), pp. 25-35. (in Russian).
23. Mrochek A.G., Stel’mashok V.I., Strigo N.P., Poloneckij O.L., Zacepin A.O., Zaharevich A.N., Bel’skij E.V. Sposob implantacii biodegradiruemogo sosudistogo skaffolda posle rekanalizacii hronicheskoj protyazhennoj okklyuzii koronarnoj arterii [A method for implanting a biodegradable vascular scaffold after recanalization of chronic extended coronary artery occlusion]: pat. BY 21809. Opubl. 30.04.2018. (in Russian).
24. Gao R., Yang Y., Han Y., Huo Y., Chen J., Yu B., Su X., Li L., Kuo H.-C., Ying S.-W., Cheong W.-F., Zhang Y., Su X., Xu B., Popma J.J., Stone G.W. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: ABSORB China trial. J Am Coll Cardiol, 2015, vol. 66, no. 21, pp. 2298-2309.
25. Kereiakes D.J., Ellis S.G., Metzger C., Caputo R.P., Rizik D.G., Teirstein P.S., Litt M.R., Kini A., Kabour A., Marx S.O., Popma J.J., McGreevy R., Zhang Z., Simonton C., Stone G.W. 3-year clinical outcomes with everolimus-eluting bioresorbable coronary scaffolds: the ABSORB III trial. J Am Coll Cardiol, 2017, vol. 70, no. 23, pp. 2852-2862. doi: 10.1016/j.jacc.2017.10.010.
26. Onuma Y., Sotomi Y., Shiomi H., Ozaki Y., Namiki A., Yasuda S., Ueno T., Ando K., Furuya J., Igarashi K., Kozuma K., Tanabe K., Kusano H., Rapoza R., Popma J.J., Stone G.W., Simonton C., Serruys P.W., Kimura T. Two-year clinical, angiographic, and serial optical coherence tomographic follow-up after implantation of an everolimus-eluting bioresorbable scaffold and an everolimus-eluting metallic stent: insights from the randomised ABSORB Japan trial. EuroIntervention, 2016, vol. 12, no. 9, pp. 1090-1101.
27. Cassese S., Byrne R.A., Ndrepepa G., Kufner S., Wiebe J., Repp J., Schunkert H., Fusaro M., Kimura T., Kastrati A. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials. Lancet, 2016, vol. 387, no. 10018, pp. 537-544.
28. Kereiakes D.J., Onuma Y., Serruys P.W., Stone G.W. Bioresorbable Vascular Scaffolds for Coronary Revascularization. Circulation, 2016, vol. 134, no. 2, pp. 168-182.
29. Onuma Y., Dudek D., Thuesen L., Webster M., Nieman K., Garcia-Garcia H.M., Ormiston J.A., Serruys P.W. Five-year clinical and functional multislice computed tomography angiographic results after coronary implantation of the fully resorbablepolymeric everolimus-eluting scaffold in patients with de novo coronary artery disease: the ABSORB cohort a trial. JACC Cardiovasc Interv, 2013, vol. 6, no. 10, pp. 999-1009.
30. Gao R. on behalf of the ABSORB-China Investigators. Randomized comparison of everolimus-eluting bioresorbable vascular scaffolds versus Everolimus-eluting metallic stents in patients with coronary artery disease: 3-year Clinical Outcomes from ABSORB China [Electronic resource]: Presented at: EuroPCR 2017. May 17, 2017. Paris, France. – Mode of access: https://www.tctmd.com/slide/randomized-comparison-everolimus-eluting-bioresorbable-vascular-scaffolds-vs-everolimus. – Data of access: 29.11.2017.
31. Kozuma K, on behalf of the ABSORB-Japan Investigators. ABSORB-Japan: 3-year clinical and angiographic results of a randomized trial evaluating the Absorb bioresorbable vascular scaffold vs metallic DES in de novo native coronary artery lesions [Electronic resource]: Presented at: EuroPCR 2017. – May 17, 2017. Paris, France. – Mode of access: https://www.tctmd.com/slide/absorb-japan-results-3-year-clinical-and-angiographic-results. – Data of access: 29.11.2017.
32. Baumbach A., Zaman A., West N.E.J., O’Kane P., Egred M., Johnson T., Wheatcroft S., Bowles R., de Belder A., Bouras G., Lansky A., Hill J., Mathur A., de Belder M.A., Banning A.P. Acute and one-year clinical outcomes following implantation of bioresorbable vascular scaffolds: the ABSORB UK Registry. EuroIntervention, 2018, vol. 13, no. 13, pp. 1554-1560.
33. Biscaglia S., Campo G. Bioresorbable Everolimus-Eluting Vascular Scaffold for Long Coronary Lesions: A Subanalysis of the International, Multicenter GHOST-EU (Gauging coronary Healing with bioresorbable Scaffolding platforms in Europe) Registry. JACC Cardiovasc Interv, 2017, vol. 10, no. 12, pp. 1274-1275. doi:10.1016/j.jcin.2017.04.001.
Review
For citations:
Strygo N., Stelmashok V., Polonetsky O. Long-term outcomes after correction of long coronary lesions using biodegradable vascular scaffolds. Emergency Cardiology and Cardiovascular Risks journal. 2022;6(1):1510-1518. (In Russ.) https://doi.org/10.51922/2616-633X.2022.6.1.1510