Preview

Emergency Cardiology and Cardiovascular Risks journal

Advanced search

Secondary dyslipidemia and arterial stiffness in asymptomic patients with subclinical hypothyroidism and carotid atherosclerosis

https://doi.org/10.51922/2616-633X.2024.8.1.2125

Abstract

   Purpose of the study: to evaluate the relationship of cardiac-ankle vascular index (CAVI), ankle-brachial index (ABI) and brachiocephalic artery ultrasound findings and lipid profile in asymptomatic working-age patients with subclinical hypothyroidism.

   The design of the study. A cross-sectional cohort study analyzing data from 70 patients of working age with different thyroid hormonal status without clinical signs of chronic insufficiency of cerebral circulation.

   Materials and methods. The study included 70 persons of working-age without clinical signs of chronic insufficiency of cerebral circulation: 46 with laboratory-confirmed subclinical hypothyroidism (thyroid stimulating hormone (TSH) level > 4.0 mIU/L with normal thyroid hormone free fractions) and 24 patients without thyroid dysfunction. The groups were comparable in terms of age, sex, smoking, arterial hypertension. All patients underwent comparative analysis of lipid spectrum parameters (Total Cholesterol (TC), Triglycerides (TG), Low-Density Lipoprotein Cholesterol (LDL-C), High-Density Lipoprotein Cholesterol (HDL-C), Low- and High-Density Apolipoproteins) and ultrasound examination of carotid arteries. One of the used methods of preclinical diagnostics of atherosclerosis – volumetric sphygmography with assessment of cardiac-ankle vascular index (CAVI) and ankle-brachial index (ABI) – is described in detail in the article.

   Results. Patients with subclinical hypothyroidism exhibited significantly higher levels of TC, LDL-C, ApoB, ApoB/ApoA1 ratio, and atherogenic coefficient, and lower levels of HDL-C compared to patients without thyroid dysfunction. Additionally, a higher proportion of patients with subclinical hypothyroidism had elevated total cholesterol and LDL-C levels. Our data indicate that a significantly higher proportion of patients with subclinical hypothyroidism have atherogenic types of hyperlipidemia compared to those without thyroid dysfunction. Specifically, Type IIa hyperlipidemia was more prevalent in the subclinical hypothyroidism group. A direct, moderately strong association between elevated TSH level and atherogenic type of hyperlipidemia (r = 0.60; p < 0.01), atherosclerotic (r = 0.58; p < 0.01), multivessel (r = 0.54; p < 0.05) lesion of brachiocephalic arteries, presence of signs of atherosclerotic plaque instability (r = 0.64; p < 0.01) were found. In the group of patients with subclinical hypothyroidism, the proportion with low ABI was significantly higher: 34.7 % (n = 16) vs 12.5 % (n = 3) (F = 0.057; p < 0.05). A direct association between the reduced ABI value and the presence of ultrasound signs of multivessel atherosclerotic lesion of brachiocephalic arteries (r = 0.337, p < 0.001), and a negative association between ABI < 1.00 and atherogenic hyperlipidemia type IIa (r = 0.43; p < 0.05) were established.

   Conclusion. In clinically healthy working-age patients with subclinical hypothyroidism compared to those with normal thyroid function, there is a higher proportion of individuals with atherosclerotic multivessel lesions of the precerebral basin (32.6 % (n = 15) vs. 8.3 % (n = 2), χ² = 5.05; p < 0.05). The disease progression is associated with a background of atherogenic type 2a hyperlipidemia (93.5% (n = 43) vs. 70.8% (n = 17), χ² = 6.60; p < 0.05) combined with a deficiency of antiatherogenic high-density lipoproteins (HDL-C) (1.0 ± 0.09 mmol/L vs. 1.3 ± 0.06 mmol/L; p < 0.05). The etiopathogenetic mechanisms of “early vascular aging”, the criteria for stratification of risk groups for atherosclerosis-associated cardiovascular diseases, the selection of diagnostic algorithms for visualizing preclinical stages of atherogenesis, and timely antiatherogenic strategies in asymptomatic patients with comorbid thyroid pathology require further exploration. Active implementation in practical healthcare of the assessment of regional (segmental) vascular stiffness using volumetric sphygmography based on the characteristics of the main (CAVI) and peripheral (ABI) blood flow can be proposed for diagnosing preclinical stages of atherogenesis in comorbid patients with endocrinopathies. Verification of a stenosing hemodynamically significant or non-hemodynamically significant atherosclerotic lesion of the coronary arteries, irrespective of the clinical component, is a factor of high cardiovascular risk necessitating immediate correction of hyperlipidemia.

About the Authors

E. B. Petrova
Belarusian State Medical University; State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



O. N. Shishko
Belarusian State Medical University; Minsk City Endocrinology Center,
Belarus

Minsk



M. G. Kaliadka
State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



T. V. Statkevich
Belarusian State Medical University
Belarus

Minsk



S. V. Chernyak
State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



A. N. Popel
State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



N. Ghanaatpishehsanani
Belarusian State Medical University
Belarus

Minsk



A. A. Pleshko
State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



N. P. Mitkovskaya
State Institution “Republican Scientific and Practical Center “Cardiology”
Belarus

Minsk



References

1. WHO reveals leading causes of death and disability worldwide: 2000-2019 : WHO Bulletin. Available at: https://www.who.int/ru/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (accessed 15. 03. 2024).

2. Visseren F.L.J., Mach F., Smulders Y.M. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J, 2021, vol. 42, iss. 34, pp. 3227-3337. doi: 10.1093/eurheartj/ehab484

3. Capaeva N.L., Petrova E.B., Pleshko A.A. Pozhiloj pacient s ostrym koronarnym sindromom: osobennosti vedeniya v period pandemii COVID-19 [Elderly patient with acute coronary syndrome: features of management during the COVID-19 pandemic]. Neotlozh kardiologiya i kardiovaskulyar riski, 2021, vol. 5, no. 2, pp. 1395-1405. (in Russian).

4. Pahwa R., Goyal A., Jialal I. Chronic Inflammation. StatPearls. Treasure Island (FL): StatPearls Publishing; 2024 Jan. 2023 Aug 7. PMID: 29630225.

5. Benjamin E. J., Virani S. S., Callaway C. W. et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 2018, vol. 137(12), pp. e67-e492. doi: 10.1161/CIR.0000000000000558.

6. Pobivanceva N.F. Obosnovanie tekhnologij organizacii medicinskoj pomoshchi pacientam s vysokim kardiovaskulyarnym riskom na primere Brestskoj oblasti (chast 1) [Substantiation of technologies for the organization of medical care for patients with high cardiovascular risk on the example of the Brest region (part 1)]. Neotlozh kardiologiya i kardiovaskulyar riski, 2021, vol. 5, no. 1, pp. 1234-1238. (in Russian).

7. Petrova E., Shishko O., Statkevich T., et al. Secondary hyperlipidemia and atherosclerosis in patients with thyroid pathology. Cardiology in Belarus, 2022, vol. 14(6), pp. 814-829. doi: 10.34883/PI.2022.14.6.010. (in Russian).

8. Zhou M., Wang H., Zeng X. et al. Mortality, Morbidity and Risk Factors in China and Its Provinces. Lancet, 2019, vol. 394(10204), pp. 1145-1158. doi: 10.1016/S0140-6736(19)30427-1.

9. Shimizu Y., Yamanashi H., Honda Y. et al. Low-Density Lipoprotein Cholesterol, Structural Atherosclerosis, and Functional Atherosclerosis in Older Japanese. Nutrients, 2022, vol. 15(1), pp. 183. doi: 10.3390/nu15010183.

10. Gupta R., Guptha S., Sharma K. K., et al. Regional variations in cardiovascular risk factors in India: India heart watch. World J Cardiol, 2012, vol. 4(4), pp. 112-20. doi: 10.4330/wjc.v4.i4.112.

11. Ward N.C., Nolde J.M., Chan J. et al. Lipoprotein (a) and Hypertension. Curr Hypertens Rep, 2021, vol. 23, no. 12, pp. 44. doi: 10.1007/s11906-021-01161-6.

12. Davidson M.H. Overview of Cholesterol and Lipid Disorders. Reviewed/Revised Jul 2023.

13. Ganda O.P. Dyslipidemia: Pathophysiology, evaluation, and management. In: Feingold K.R., Anawalt B., Boyce A., et al., eds. Endotext. South Dartmouth (MA): MDText. com, Inc., 2000

14. Ameen M. Evaluation of Different Levels Thyroid Dysfunction in Patients having Diffuse Goiter from Rawalpindi and Islamabad. J Clin Epigenet, 2017, vol. 3, pp. 2472-1158. doi: 10.21767/2472-1158.100065.

15. Gutch M., Rungta S., Kumar S., et al. Thyroid functions and serum lipid profile in metabolic syndrome. Biomed J, 2017, vol. 40(3), pp. 147-153. doi: 10.1016/j.bj.2016.12.006.

16. Delitala A.P., Filigheddu F., Orrù M. et al. No evidence of association between subclinical thyroid disorders and common carotid intima medial thickness or atherosclerotic plaque. Nutr Metab Cardiovasc Dis, 2015, vol. 25(12), pp. 1104-1110. doi: 10.1016/j.numecd.2015.09.001.

17. Chen Y., Wu X., Wu R. et al. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci Rep, 2016, vol. 19(6), pp. 26174. doi: 10.1038/srep26174.

18. Mozaffarian D., Benjamin E.J., Go A.S. et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation, 2016, vol. 133 (4), pp. e38-360. doi: 10.1161/CIR.0000000000000350.

19. Abdel-Gayoum A.A. Dyslipidemia and serum mineral profiles in patients with thyroid disorders. Saudi Med J, 2014, vol. 35(12), pp. 1469-1476.

20. Liu H., Peng D. Association between thyroid dysfunction and dyslipidemia. Endocr Connect, 2022, vol. 11(2), pp. e210002. doi: 10.1530/EC-21-0002.

21. Papadopoulou A.M., Bakogiannis N., Skrapari I. et al. Thyroid dysfunction and arterial wall remodeling. In Vivo, 2020, vol. 34(6), pp. 3127-3136. doi: 10.21873/invivo.12147.

22. Benjamin E.J., Virani S.S., Callaway C.W., et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 2018,Circulation. vol. 137(12), pp. e67-e492. doi: 10.1161/CIR.0000000000000558.

23. Petrova E.B., Shishko O.N., Statkevich T.V., et al. Dyslipidemia and severity of atherosclerotic coronary artery disease in patients with acute coronary syndrome and subclinical hypothyroidism. Avicenna Bulletin, 2022, vol. 24(3), pp. 306-316. doi: 10.25005/2074-0581-2022-24-3-306-316. (in Russian).

24. Peixoto de Miranda É.J., Bittencourt M.S., Goulart A.C., et al. Lack of Association Between Subclinical Hypothyroidism and Carotid-Femoral Pulse Wave Velocity in a Cross-Sectional Analysis of the ELSA-Brasil. Am J Hypertens, 2017, vol. 30(1), pp. 81-87. doi: 10.1093/ajh/hpw117.

25. Shin D.J., Osborne T.F. Thyroid hormone regulation and cholesterol metabolism are connected through Sterol Regulatory Element-Binding Protein-2 (SREBP-2). J Biol Chem, 2003, vol. 278(36), pp. 34114-34118. doi: 10.1074/jbc.M305417200.

26. Knapp M., Lisowska A., Sobkowicz B., et al. Myocardial perfusion and intima-media thickness in patients with subclinical hypothyroidism. Adv Med Sci, 2013, vol. 58(1), pp. 44-49. doi: 10.2478/v10039-012-0068-9.

27. Liu H., Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect, 2022, vol. 11(2), pp. e210002. doi: 10.1530/EC-21-0002.

28. Jellinger P.S. American Association of Clinical Endocrinologists/American College of Endocrinology. Management of Dyslipidemia and Prevention of Cardiovascular Disease. Clinical Practice Guidelines. Diabetes Spectr, 2018, vol. 31(30, pp. 234-245. doi: 10.2337/ds18-0009.

29. Su X., Chen X., Peng H., Song J., et al. Novel insights into the pathological development of dyslipidemia in patients with hypothyroidism. Bosn J Basic Med Sci, 2022, vol. 22(3), pp. 326-339. doi: 10.17305/bjbms.2021.6606.

30. Gao N., Zhang W., Zhang Y.Z. et al. Carotid intima-media thickness in patients with subclinical hypothyroidism: a meta-analysis. Atherosclerosis, 2013, vol. 227, pp. 18-25. doi: 10.1016/j.atherosclerosis.2012.10.070.

31. Kim H., Kim T.H., Kim H.I, Park S.Y. et al. Subclinical thyroid dysfunction and risk of carotid atherosclerosis. PLoS One. 2017, vol. 12 (7), pp. e0182090. doi: 10.1371/journal.pone.0182090.

32. Andersen M.N., Olsen A.S., Madsen J.C. et al. C. Long-term outcome in levothyroxine treated patients with subclinical hypothyroidism and concomitant heart disease. J Clin Endocrinol Metab, 2016, vol. 101(11), pp. 4170-4177. doi: 10.1210/jc.2016-2226.

33. Li X., Wang Y., Guan Q. et al. The lipid-lowering effect of levothyroxine in patients with subclinical hypothyroidism : A systematic review and meta-analysis of randomized controlled trials. Clin Endocrinol (Oxf), 2017, vol. 87(1), pp. 1-9. doi: 10.1111/cen.13338.

34. Aziz M., Kandimalla Y., Machavarapu A. et al. Effect of thyroxin treatment on carotid intima-media thickness (CIMT) reduction in patients with subclinical hypothyroidism (SCH): a meta-analysis of clinical trials. J Atheroscler Thromb, 2017, vol. 24 (7), pp. 643-659. doi: 10.5551/jat.39917.

35. Zhao T., Chen B., Zhou Y. et al. Effect of levothyroxine on the progression of carotid intima-media thickness in subclinical hypothyroidism patients: a meta-analysis. BMJ Open, 2017, vol. 7(10), pp. e016053. doi: 10.1136/bmjopen-2017-016053.

36. Shishikura D. Noninvasive imaging modalities to visualize atherosclerotic plaques. Cardiovasc Diagn Ther, 2016, vol. 6(4), pp. 340-353. doi: 10.21037/cdt.2015.11.07.

37. Si D., Ni L., Wang Y. et al. A new method for the assessment of endothelial function with peripheral arterial volume. BMC Cardiovasc Disord, 2018, vol. 18(1), pp. 81. doi: 10.1186/s12872-018-0821-5.

38. Chistiakov D.A., Revin V.V., Sobenin .IA. et al. Vascular endothelium: functioning in norm, changes in atherosclerosis and current dietary approaches to improve endothelial function. Mini Rev Med Chem, 2015, vol. 15(4), pp. 338-350. doi: 10.2174/1389557515666150226114031.

39. Sun Ch.-K. Cardio-Ankle Vascular Index (CAVI) as an Indicator of Arterial Stiffness. Integr Blood Press Control, 2013, vol. 30(6), pp. 27-38. doi: 10.2147/IBPC.S34423.

40. Sumin A.N., Shcheglova A.V. Assessment of arterial stiffness using the cardio-ankle vascular index – what we know and what we strive for. Rational Pharmacotherapy in Cardiology, 2021, vol. 17(4), pp. 619-627. doi:10.20996/1819-6446-2021-08-09. (in Russian).

41. Saiki A. et al. The arterial stiffness estimated using CAVI in healthy subjects increases linearly with aging. J Atheroscleros Thrombos, 2020.

42. Miyoshi T, Ito H. Arterial stiffness in health and disease: The role of cardio-ankle vascular index. J Cardiol, 2021, vol. 78(6), pp. 493-501. doi: 10.1016/j.jjcc.2021.07.011.

43. Królczyk J., Piotrowicz K., Chudek J. et al. Clinical examination of peripheral arterial disease and ankle-brachial index in a nationwide cohort of older subjects: practical implications. Aging Clin Exp Res, 2019, vol. 31(10), pp. 1443-1449. doi: 10.1007/s40520-018-1095-6.

44. Touboul P.J., Hennerici M.G., Meairs S., et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3<sup>rd</sup>, 4<sup>th</sup> and 5<sup>th</sup> watching the risk symposia, at the 13<sup>th</sup>, 15<sup>th</sup> and 20<sup>th</sup> European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis, 2012, vol. 34, pp. 290-296.

45. Gerhard-Herman M.D., Gornik H.L., Barrett C. The 2016 AHA/ACC Guideline on the Management of Patients with Lower Extremity Peripheral Artery Disease: Executive Summary. Vasc Med. 2017, vol. 22(3), pp. NP1-NP43. doi: 10.1177/1358863X17701592.

46. Moskalenko Yu.E., Kravchenko T.I. Physiological and pathophysiological mechanisms of intracranial hemo- and liquorodynamics. J Fundamental Med Biol, 2017, vol. 4, pp. 3-11. (in Russian).


Review

For citations:


Petrova E.B., Shishko O.N., Kaliadka M.G., Statkevich T.V., Chernyak S.V., Popel A.N., Ghanaatpishehsanani N., Pleshko A.A., Mitkovskaya N.P. Secondary dyslipidemia and arterial stiffness in asymptomic patients with subclinical hypothyroidism and carotid atherosclerosis. Emergency Cardiology and Cardiovascular Risks journal. 2024;8(1):2125-2136. https://doi.org/10.51922/2616-633X.2024.8.1.2125

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2616-633X (Print)