Preview

Неотложная кардиология и кардиоваскулярные риски

Расширенный поиск

Вариантная анатомия полулунных заслонок клапана аорты и легочного ствола

https://doi.org/10.51922/2616-633X.2024.8.1.2187

Аннотация

   В статье представлены современные отечественные и зарубежные литературные данные о вариантной анатомии полулунных заслонок клапана аорты и легочного ствола. Показаны анатомические особенности, заключающиеся в различии вариантов строения и количества полулунных заслонок, асимметричности их строения, различии морфометрических характеристик. Уделено внимание изменению анатомической терминологии с 2019 года, в которой выделен клапанный комплекс сердца, состоящий из фиброзного скелета сердца, предсердно-желудочковых клапанов и корней аорты и легочного ствола. Показано, что в литературных источниках имеется небольшое количество данных о размерах и положении узелков полулунных заслонок клапана аорта и клапана легочного ствола. В статье уделено внимание частоте встречаемости отверстий и их морфометрическим характеристикам в полулунных заслонках изучаемых клапанов. Представлены гистологические особенности полулунных заслонок, проявляющиеся в их утолщении и изменении клеточного и волокнистого состава в зависимости от возраста человека.

Об авторах

А. А. Пасюк
УО «Белорусский государственный медицинский университет»
Беларусь

Минск



Н. А. Трушель
УО «Белорусский государственный медицинский университет»
Беларусь

Минск



Список литературы

1. Mikhailov S.S. Klinicheskaya anatomiya serdtsa [Clinical anatomy of the heart]. M.: Meditsina, 1987, 288 p. (in Russian).

2. Bokeriya L.A., Gudkova R.G. Serdechno-sosudistaya khirurgiya - 2013. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya [Cardiovascular surgery – 2013. Diseases and congenital anomalies of the circulatory system]. M.: NTsSSKh im. A.N. Bakuleva, 2014, 220 p. (in Russian).

3. Thubrikar M. The Aortic Valve (1st ed.). New York : Routledge, 2011. doi: 10.4324/9780203737163

4. FIPAT. Terminologia Anatomica. 2<sup>nd</sup> ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Tarminology, 2019.

5. Coffey S., Roberts-Thomson R., Brown A. et al. Global epidemiology of valvular heart disease. Nat Rev Cardiol, 2021, vol. 18, pp. 853-864. doi: 10.1038/s41569-021-00570-z.

6. Komarov R.N., Katkov A.I., Puzenko D.V. et al. Khirurgiya kornya aorty i aortalnogo klapana: istoriya i sovremennost [Surgery of the aortic root and aortic valve: history and modernity]. Patologiya krovoobrashcheniya i kardiokhirurgiya, 2019, vol. 23(4), pp. 9-25. doi: 10.21688/1681-3472-2019-4-9-25. (in Russian).

7. Hribernik I. Thomson J., Ho A. et al. Comparative analysis of surgical and percutaneous pulmonary valve implants over a 20-year period. Eur J Cardiothorac Surg, 2022, vol. 61(3), pp. 572-579. doi: 10.1093/ejcts/ezab368.

8. Ozaki S., Kawase I., Yamashita H. et al. A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium. J Thorac Cardiovasc Surg, 2014, vol. 147(1), pp. 301-306. doi: 10.1016/j.jtcvs.2012.11.012.

9. Baird C. W., Cooney B., Chávez M. et al. Congenital aortic and truncal valve reconstruction using the Ozaki technique: Short-term clinical results. J Thorac Cardiovasc Surg, 2021, vol. 161(5), pp. 1567-1577. doi: 10.1016/j.jtcvs.2020.01.087.

10. Mathieu P., Bossé Yo., Huggins G. S. et al. The pathology and pathobiology of bicuspid aortic valve: State of the art and novel research perspectives. J Pathol Clin Res, 2015, pp. 1(4):195-206. doi:10.1002/cjp2.21.

11. Edwards J.E. The congenital bicuspid aortic valve. Circulation, 1961, vol. 23, pp. 485-488. doi: 10.1161/01.cir.23.4.485.

12. Roberts W.C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol, 1970, vol. 26(1), pp. 72-83. doi: 10.1016/0002-9149(70)90761-7.

13. Davies M.J. Pathology of Cardiac Valves. London: Butterworths & Co, 1980, pp. 1-61.

14. Roberts W.C. The congenitally bicuspid aortic valve. A study of 85 autopsy cases. Am J Cardiol, 1970, vol. 26(1), pp. 72-83. doi: 10.1016/0002-9149(70)90761-7.

15. Hurwitz L.E., Roberts W.C. Quadricuspid semilunar valve. Am J Cardiol, 1973, vol. 31(5), pp. 623-626. doi: 10.1016/0002-9149(73)90332-9.

16. Jung S-Y. Quadricuspid pulmonary valve in an adult patient identified by transthoracic echocardiography and multi-detector computed tomography. Hellenic J Cardiol, 2015, vol. 56, pp. 266-268.

17. Hurle J.M., Colvee E. Changes in the endothelial morphology of the developing semilunar heart valves. A TEM and SEM study in the chick. Anat Embryol (Berl), 1983, vol. 167(1), pp. 67-83. doi: 10.1007/BF00304601.

18. Fallahiarezoudar E., Ahmadipourroudposht M., Idris A., Yusof N.M. A review of: application of synthetic scaffold in tissue engineering heart valves. Mater Sci Eng C Mater Biol Appl, 2015, vol. 48, pp. 556-565. doi: 10.1016/j.msec.2014.12.016.

19. Sacks M.S., Smith D.B., Hiester E.D. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res, 1998, vol. 41, pp. 131-141. doi: 10.1002/(SICI)1097-4636(199807)41:1<131::aid-jbm16>3.0.co;2-q.

20. Gould S.T., Srigunapalan S., Simmons C.A., Anseth K.S. Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ Res, 2013, vol. 113(2), pp. 186-197. doi: 10.1161/CIRCRESAHA.112.300154.

21. Yin Yip C.Y., Simmons C.A. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol, 2011, vol. 20, pp. 177-182. doi: 10.1016/j.carpath.2010.12.001.

22. Scott M., Vesely I. Aortic valve cusp microstructure: the role of elastin. Ann Thorac Surg, 1995, vol. 60(2 Suppl), pp. S391-394. doi: 10.1016/0003-4975(95)00263-k.

23. Kulchitskii K.I., Sokolov V.V., Marushchenko G. N. Klapany serdtsa [Heart valve]. Kiev: Zdorove, 1990, 184 s. (in Russian).

24. Kilessa V. V., Kilessa G. S. Klapannyi apparat serdtsa - ot anomalii do porokov [Valvular apparatus of the heart - from anomalies to valvular heart disease] Krymskii terapevticheskii zhurnal, 2012, vol. 2(19), pp. 12-16. (in Russian).

25. van Geemen D., Soares Ana L.F., Oomen Pim J.A. et al. Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PLoS One, 2016, vol. 11(2), pp. e0149020. doi: 10.1371/journal.pone.0149020.

26. Stradins P., Lacis R., Ozolanta I. et al. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardiothorac Surg, 2004, vol. 26(3), pp. 634-639. doi: 10.1016/j.ejcts.2004.05.043.

27. Roberts W.C. The structure of the aortic valve in clinically isolated aortic stenosis: an autopsy study of 162 patients over 15 years of age. Circulation, 1970, vol. 42(1), pp. 91-97. doi: 10.1161/01.cir.42.1.91.

28. Silver M.A., Roberts W.C. Detailed anatomy of the normally functioning aortic valve in hearts of normal and increased weight. Am J Cardiol, 1985, vol. 55(4), pp. 454-461. doi: 10.1016/0002-9149(85)90393-5.

29. De Kerchove L., Momeni M., Aphram G. et al. Free margin length and coaptation surface area in normal tricuspid aortic valve: an anatomical study. Eur J Cardiothorac Surg, 2018, vol. 53(5), pp. 1040-1048. doi: 10.1093/ejcts/ezx456.

30. Subramanian S., Tikhomirov V., Bharati S. et al. Relationship of Normal Aortic Valve Cusp Dimensions: A Tool to Optimize Cusp Reconstruction Valvuloplasty. Semin Thorac Cardiovasc Surg, 2016, vol. 28(2), pp. 521-527. doi: 10.1053/j.semtcvs.2015.08.005.

31. Vollebergh F.E., Becker A.E. Minor congenital variations of cusp size in tricuspid aortic valves. Possible link with isolated aortic stenosis. Br Heart J, 1977, vol. 39(9), pp. 1006-1011. doi: 10.1136/hrt.39.9.1006.

32. Sliver M.A., Roberts W.C. Detailed anatomy of the normally functioning aortic valve in hearts of normal and increased weight. Am J Cardiol, 1985, vol. 55(4), pp. 454-461. doi: 10.1016/0002-9149(85)90393-5.

33. Ivanov V.A. Osobennosti stroeniya serdtsa i ego otdelnykh struktur u prakticheski zdorovykh lits v zavisimosti ot ikh polovoi prinadlezhnosti [Gender-oriented approach to the study of the anatomy of a healthy heart and its particular elements]. Astrakhanskii meditsinskii zhurnal, 2015, vol. 10(2), pp. 51-56. (in Russian).

34. Kunzelman K.S., Grande K.J., David T.E. et al. Aortic root and valve relationships. Impact on surgical repair. J Thorac Cardiovasc Surg, 1994, vol. 107(1), pp. 162-170.

35. Boe B., Cheatham S.L., Armstrong A.K. et al. Leaflet morphology classification of the Melody transcatheter pulmonary valve. Congenit Heart Dis, 2019, vol. 14(2), pp. 297-304. doi: 10.1111/chd.12728.

36. Odinokova S.N., Nikolenko V.N., Komarov R.N. et al. Korrelyatsii morfometricheskikh parametrov struktur kornya aorty, imeyushchie prakticheskoe znachenie v khirurgicheskoi korrektsii aortalnogo klapana [The correlations of morphometric parameters of structures of the aortic root having practical significance in the surgical correction of the aortic valve]. Morfologicheskie vedomosti, 2020, vol. 28(1), pp. 30-36. doi: 10.20340/mv-mn.2020.28(1):30-36. (in Russian).

37. Ivanov V. A. Osobennosti stroeniya i korrelyatsionnye svyazi lineinykh razmerov klapannogo apparata serdtsa u muzhchin i zhenshchin zrelogo vozrasta [Structural features and correlation of linear dimensions of the valvular apparatus of the heart in men and women of mature age]. Forcipe, 2020, vol. 3(S2), pp. 36-40. (in Russian).

38. Sahasakul Y., Edwards W.D., Naessens J.M., Tajik A.J. Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on autopsy study of 200 normal human hearts. Am J Cardiol, 1988, vol. 62(7):424-430. doi: 10.1016/0002-9149(88)90971-x.

39. Gnyaneshwar R., Kumar R., Balakrishnan K. Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg, 2002, vol. 73(4), pp. 1122-1129. doi: 10.1016/s0003-4975(01)03588-3.

40. Schäfers H., Bierbach B., Aicher D. A new approach to the assessment of aortic cusp geometry. J Thorac Cardiovasc Surg, 2006, vol. 132(2), pp. 436-438. doi: 10.1016/j.jtcvs.2006.04.032.

41. Dudkiewicz D., Zhingre Sanchez J.D., Hołda J. et al. Aortic valve fenestrations: Macroscopic assessment and functional anatomy study. Clin Anat, 2023, vol. 36(4), pp. 612-617. doi: 10.1002/ca.24002.

42. Foxe A.N. Fenestrations of the semilunar valves. Am J Pathol, 1929, vol. 5(2), pp. 179-182.

43. Volodko A. V., Kazachenok Ya. A. Vozrastnye osobennosti klapanov aorty i legochnogo stvola cheloveka [Age-related features of human aortic valves and pulmonary trunk]. M., 2021. (in Russian).

44. Barkina MA, Demidov VO, Gaponov AA. Morfometriya klapanov aorty i legochnogo stvola [Morphometry of the aortic and pulmonary valves]. Vestnik Uralskogo gosudarstvennogo meditsinskogo universiteta, 2023, vol. 3, pp. 82-88. (in Russian).


Рецензия

Для цитирования:


Пасюк А.А., Трушель Н.А. Вариантная анатомия полулунных заслонок клапана аорты и легочного ствола. Неотложная кардиология и кардиоваскулярные риски. 2024;8(1):2187-2192. https://doi.org/10.51922/2616-633X.2024.8.1.2187

For citation:


Pasiuk H.A., Trushel N.A. Variant anatomy of the semilunar leaflets of the aortic and pulmonary valves based. Emergency Cardiology and Cardiovascular Risks journal. 2024;8(1):2187-2192. (In Russ.) https://doi.org/10.51922/2616-633X.2024.8.1.2187

Просмотров: 18


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2616-633X (Print)