Клеточный состав атеросклеротических бляшек: механизмы иммунорегуляции сосудистой стенки
https://doi.org/10.51922/2616-633X.2023.7.1.1881
Аннотация
Атеросклероз – это хроническое воспалительное заболевание артерий, возникающее в процессе сложного взаимодействия между факторами риска (холестерин липопротеинов низкой плотности, ожирение, сахарный диабет, артериальная гипертензия, курение и т.д.), компонентами сосудистой стенки, а также иммунными и воспали- тельными клетками. Различные клетки из интимы, медии, адвентиции и периваскулярной жировой ткани не только составляют неповрежденную и нормальную стенку артериального сосуда, но и участвуют в воспалительной реакции при атеросклерозе.
Процесс атеросклероза запускается активацией эндотелия, за которым следует каскад событий (накопление липидов, миграция и пролиферация гладкомышечных клеток, трансформация фибробластов в миофибробласты). Возникающая в результате атеросклеротическая бляшка вызывает сужение сосуда и приводит к сердечно-сосудистым осложнениям. В статье рассматриваются результаты последних исследований, которые раскрывают роль различных клеток стенки артериального сосуда, а также клеток врожденного и адаптивного иммунитета в развитии атеросклероза.
Об авторе
М. И. КазаковаБеларусь
Минск
Список литературы
1. Lopez A.D., Mathers C.D., Ezzati M., Jamison D.T., Murray C.J.L. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 2006, vol. 367, no. 9524, pp. 1747–1757. doi: 10.1016/S0140-6736(06)68770-9.
2. Wang D., Wang Z., Zhang L., Wang Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediators Inflamm, 2017, 8135934. https://doi.org/10.1155/2017/8135934.
3. Milutinović A., Šuput D., Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci, 2020, vol. 20, no 1, pp. 21-30. doi:10.17305/bjbms.2019.4320.
4. Gimbrone Jr M.A., García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016, vol. 118, no 4, pp. 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301
5. Tabas I., García-Cardeña G., Owens G.K. Recent insights into the cellular biology of atherosclerosis. J Cell Biol, 2015, vol. 209, no 1, pp. 13–22. https://doi.org/10.1083/jcb.201412052.
6. Waller B.F., Orr C.M., Slack J.D., Pinkerton C.A., Van Tassel J., Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques--Part I. Clin Cardiol, 1992, vol. 15, no 6, pp. 451–457. https://doi.org/10.1002/clc.4960150613.
7. Tellides G., Pober J.S. Inflammatory and immune responses in the arterial media. Circ Res, 2015, vol. 116, no. 2, pp. 312-22. https://doi.org/10.1161/CIRCRESAHA.116.301312.
8. Durham A.L., Speer M.Y., Scatena M., Giachelli C.M., Shanahan C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res, 2018, vol.114, no 4, pp. 590–600. https://doi.org/10.1093/cvr/cvy010.
9. Bennett M.R., Sinha S., Owens G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ Res, 2016, vol. 118, no 4, pp. 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361.
10. Shanahan C.M., Crouthamel M.H., Kapustin A., Giachelli C.M., Arterial calcification in chronic kidney disease:key roles for calcium and phosphate. Circ Res, 2011, vol. 109, no. 6, pp. 697-711. https://doi.org/10.1161/CIRCRESAHA.110.234914.
11. Allahverdian S., Chehroudi A.C., McManus B.M., Abraham T., Francis G.A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation, 2014, vol. 129, no 15, pp. 1551–1559. https://doi.org/10.1161/CIRCULATIONAHA.113.005015.
12. Misra A., Rehan R., Lin A., Patel S., Fisher E.A. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol, 2022, vol. 42, no 3, pp. 74–84. https://doi.org/10.1161/ATVBAHA.121.316093.
13. Shankman L.S. Gomez D., Cherepanova O.A., Salmon M., Alencar G.F., Haskins R.M., Swiatlowska P., Newman A.A., Greene E.S., Straub A.C., Isakson B., Randolph G.J., Owens G.K. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med, 2015, vol. 21, no 6, pp. 628–637. https://doi.org/10.1038/nm.3866.
14. Akhavanpoor, M., Gleissner, C., Akhavanpoor, H., Lasitschka, F., Doesch, A., Katus, H. (2018). Adventitial tertiary lymphoid organ classification in human atherosclerosis. Cardiovasc Pathol., 2018, vol. 32, pp. 8-14. https://doi.org/10.1016/j.
15. Eshghjoo S., Kim D.M., Jayaraman A., Sun Y., Alaniz R.C. Macrophage Polarization in Atherosclerosis. Genes (Basel), 2022, vol. 13, no 5, p. 756. https://doi.org/10.3390/genes13050756.
16. Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000, vol. 164, no 1, pp. 6166–6173. https:// doi.org/10.4049/jimmunol.164.12.6166.
17. Stöger J.L., Gijbels M.J., van der Velden S., Manca M., van der Loos C.M., Biessen E.A.L., Daemen M.J.A.P., Lutgens E., de Winther M.P.J. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012, vol.225, no 2, pp. 461-468. https://doi.org/10.1016/j.atherosclerosis.2012.09.013.
18. Bartlett B., Ludewick H.P., Misra A., Lee S., Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol, 2019, vol. 317, no 2, pp. 375–386. https://doi.org/10.1152/ajpheart.00206.2019.
19. Robbins C.S., Hilgendorf I., Weber G.F., Theurl I., Iwamoto Y., Figueiredo J.-L., Gorbatov R., Sukhova G.K., Gerhardt L.M.S., Smyth D., Zavitz C.C.J., Shikatani E.A., Parsons M., van Rooijen N., Lin H.Y., Husain M., Libby P., Nahrendorf M., Weissleder R., Swirski F.K. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med, 2013, vol. 19, no. 9, pp. 1166–1172. https://doi.org/10.1038/nm.3258.
20. Libby P., Nahrendorf M., Swirski F.K. Leukocytes Link Local and Systemic Inflammation in Ischemic Cardiovascular Disease: An Expanded “Cardiovascular Continuum”. J Am Col Cardiol, 2016, vol. 67, no. 9, pp. 1091-1103. https://doi.org/10.1016/j.jacc.2015.12.048.
21. Saranchina Y.V., Dutova S.V. et al. Kletochnyj sostav ateroskleroticheskih blyashek [Cellular composition of atherosclerotic plaques]. Sovremennye problemy nauki i obrazovaniya, 2018, no 1. https://doi.org/10.17513/spno.27373. (in Russian).
Рецензия
Для цитирования:
Казакова М.И. Клеточный состав атеросклеротических бляшек: механизмы иммунорегуляции сосудистой стенки. Неотложная кардиология и кардиоваскулярные риски. 2023;7(1):1881-1884. https://doi.org/10.51922/2616-633X.2023.7.1.1881
For citation:
Kazakova M. Cellular structure of atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Emergency Cardiology and Cardiovascular Risks journal. 2023;7(1):1881-1884. (In Russ.) https://doi.org/10.51922/2616-633X.2023.7.1.1881