Preview

Emergency Cardiology and Cardiovascular Risks journal

Advanced search

Modern approaches to prediction and prevention of cardiotoxic effects of complex treatment of breast cancer.

https://doi.org/10.51922/2616-633X.2022.6.2.1625

Abstract

Objectives. To study the effect of complex treatment of breast cancer (BC) on the parameters of the structural and functional state of the cardiovascular system. To develop a model for predicting the ejection fraction (EF) of the left ventricle (LV) measured by the Simpson method after the end of antitumor therapy on the basis of initial laboratory and instrumental data.
Methods. The cardiovascular system was examined in 100 women who received complex treatment of BC. The groups were formed depending on the presence of arterial hypertension (AH) and on the cardiotropic therapy (CT) received: the BC group, the BC+ CT group, the BC+ AH+CT group.
Results. The research showed a decrease in LVEF measured by the Simpson method from 66,0 (62,0; 71,0)% to 60,0 (57,0-66,0)%, an increase in LV end systolic diameter from 27,0 (24,0–29,0) mm to 27,0 (25,0–31,0) mm, LV end systolic volume from 27,0 (22,0; 32,0) ml to 28,0 (24,0; 37,0) ml; a decrease in the mitral ratio of peaks early to late diastolic filling velocity from 1,4 (1,1; 1,8) to 1,2 (1,1; 1,5), in the ratio of early to late diastolic mitral annular velocity from 1,4 (1,2; 1,7) to 1,2 (1,0; 1,6); in the of early to late diastolic tricuspid annular velocity from 1,4 (1,2; 1,7) to 1,0 (0,8; 1,1), reduction of the increase in the diameter (d) of the brachial artery (BA) after performing a post-occlusion test from 12,5 (11,0; 16,0)% to 9,0 (6,0; 12,0)%, the reduction of heart rate variability: standard deviation of NN intervals from 57,7 (44,9; 72,9) ms to 54,1 (44,0; 63,3) ms, root mean square of successive RR interval differences from 29,6 (17,5; 43,3) ms to 20,0 (15,2; 28,0) ms, total power of the spectrum from 1326,3 (996,4; 2061,7) to 1132,4 (824,3; 1649,8) ms2/ Hz; power of the high-frequency (HF) from 647,3 (416,8; 921,4) to 443,7 (315,9; 669,0) ms2/ Hz; an increase in ratio of low-frequency to HF from 0,8 (0,7; 1,0) to 1,05 (0,8; 1,2). A Simpson-based EF prognostic model after the end of BC treatment has been developed. It includes the total dose of doxorubicin calculated for the body surface area, the peak early diastolic filling velocity of transtricuspid flow, the diameter of the pulmonary artery, the velocity of circumferential fiber shortening, the intima-medial thickness of the left common carotid artery, HF, % increase of the d of the BA. The developed model has a high prognostic ability.
Conclusions. Breast cancer treatment negatively affects the structural and functional state of the cardiovascular system. The administration of a combination of valsartan and carvedilol prevents the development of adverse changes. The developed EF prognostic model allows to identify patients for the preventive administration of cardiotropic therapy.

About the Authors

N. Kananchuk
Belarusian State Medical University; Minsk City Emergency Hospital
Belarus

Minsk



E. Petrova
Belarusian State Medical University; Republican Scientific and Practical Center of Cardiology
Belarus

Minsk



E. Balysh
Belarusian State Medical University
Belarus

Minsk



S. Kananchuk
Государственное учреждение «Республиканский клинический медицинский центр» Управления делами Президента Республики Беларусь
Belarus

Minsk



M. Abramovich
Учреждение Белорусского государственного университета «Научно-исследовательский институт прикладных проблем математики информатики»,
Belarus

Minsk



S. Smirnov
Государственное учреждение «Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н.Александрова»
Belarus

Minsk



E. Gutkovskaya
Государственное учреждение «Республиканский научно-практический центр онкологии и медицинской радиологии им. Н.Н.Александрова»
Belarus

Minsk



N. Mitkovskaya
Belarusian State Medical University; Republican Scientific and Practical Center of Cardiology
Belarus

Minsk



References

1. Okeanov A.E., Moiseev P.I., Levin L.F., Evmenenko A.A., Ipatij T.B., Sukonko O.G., pod red. O.G. Sukonko. Rak v Belarusi: cifry i fakty. Analiz dannykh Belorusskogo kancer-registra za 2009-2018 gg. [Cancer in Belarus: myths and facts. Analysis of the data of the Belarusian Unified State Register for 2009-2018.]. Minsk : NBB, 2019, 422 s. (in Russian).

2. Broberg A.M., Geisler J., Tuohinen S., Skytta T., Hrafnkelsdóttir Þ.J., Nielsen K.M., Hedayati E., Omland T., Offersen B.V., Lyon A.R., Gulati G. Prevention, Detection, and Management of Heart Failure in Patients Treated for Breast Cancer. Curr. Heart Fail Rep, 2020, vol. 17, no. 6, pp. 397–408.

3. Onkologicheskie zabolevaniya v 2020 godu: 19,3 mln. novichok sluchaev i 10 mln. letal’nyj iskhod [electronic resource] [Onkologicheskie zabolevaniya v 2020 godu: 19,3 mln. novych sluchaev i 10 mln. letalnych ischodov]. Available at: https://news.un.org/ru/story/2020/12/1392562. (accessed 28.06.2022). (in Russian).

4. Algoritmy diagnostiki i lecheniya zlokachestvenny`kh novoobrazovanij (utverzhdyon postanovlenie Ministerstva zdravookhraneniya Respubliki Belarus ot 06.07.2018 № 60) : klinicheskij protocol [electronic resource] [Algorithms for the diagnosis and treatment of malignant neoplasms (utverzhdyon postanovlenie Ministerstva zdravookhraneniya Respubliki Belarusian horse 06.07.2018 № 60) : klinicheskij protocol]. Available at: http://minzdrav.gov.by/ru/dlya-spetsialistov/standarty-obsledovaniya-i-lecheniya/novoobrazovaniya.php. (accessed 28.06.2022). (in Russian).

5. Sweeney M., Yiu A., Lyon A.R. Cardiac Atrophy and Heart Failure in Cancer. Card. Fail Rev, 2017, vol. 3, no. 1, pp. 62–65.

6. Camara Planek M.I., Silver A.J., Volgman A.S., Okwuosa T.M. Exploratory Review of the Role of Statins, Colchicine, and Aspirin for the Prevention of Radiation Associated Cardiovascular Disease and Mortality. J. Am. Heart Assoc, 2020, vol. 9, no. 2, pp. e014668.

7. Zamorano J.L., Lancellotti P., Rodriguez Muñoz D., Aboyans V., Asteggiano R., Galderisi M., Habib G., Lenihan D.J., Lip G.Y.H., Lyon A.R., Lopez Fernandez T., Mohty D., Piepoli M.F., Tamargo J., Torbicki A., Suter T.M. Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J, 2016, vol. 37, no. 36, pp. 2768–2801.

8. Lyon A.R., Dent S., Stanway S., Earl H., Brezden-Masley C., Cohen-Solal A., Tocchetti C.G., Moslehi J.J., Groarke J.D., Bergler-Klein J., Khoo V., Tan L.L., Anker M.S., von Haehling S., Maack C., Pudil R. [et al.] Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail, 2020, vol. 22, no. 11, pp. 1945–1960. doi: 10.1002/ejhf.1920.

9. Bohdan M., Kowalczys A., Mickiewicz A., Gruchała M., Lewicka E. Cancer Therapy- Related Cardiovascular Complications in Clinical Practice: Current Perspectives. J. Clin. Med, 2021, vol. 10, no. 8, pp. 1647. doi: 10.3390/jcm10081647.

10. Varghese S.S., Johnston W.J., Eekhoudt C.R., Keats M.R., Jassal D.S., Grandy S.A. Exercise to Reduce Anthracycline-Mediated Cardiovascular Complications in Breast Cancer Survivors. Curr. Oncol, 2021, vol. 28, no. 5, pp. 4139–4156.

11. Montisci A., Palmieri V., Liu J.E., Vietri M.T., Cirri S., Donatelli F., Napoli C. Severe Cardiac Toxicity Induced by Cancer Therapies Requiring Intensive Care Unit Admission. Front Cardiovasc. Med, 2021, vol. 8, pp. 713694. doi: 10.3389/fcvm.2021.713694.

12. Odinaev F.I. Kardiotoksicheskoe vliyanie polikhimioterapii u paczientov s ostrymi lejkozami [Cardiotoxic influence of polychemotherapy in patients with acute leukemia]. Vestnik Aviczenny, 2015, vol. 17, no. 2, pp. 77–81. (in Russian).

13. Anker M.S., Hadzibegovic S., Lena A., Belenkov Y., Bergler-Klein J., de Boer R.A., Farmakis D., von Haehling S., Iakobishvili Z., Maack C., Pudil R., Skouri H., Cohen-Solal A., Tocchetti C.G., Coats A.J.S., Seferović P.M., Lyon A.R. Recent advances in cardiooncology: a report from the ‘Heart Failure Association 2019 and World Congress on Acute Heart Failure. ESC Heart Fail, 2021, vol. 6, no. 6, pp. 1140–1148.

14. Cardinale D., Iacopo F., Cipolla C.M. Cardiotoxicity of Anthracyclines. Front Cardiovasc. Med, 2020, vol. 7, no. 26, pp. 1-14. doi: 10.3389/fcvm.2020.00026.

15. Cardinale D., Ciceri F., Latini R., Franzosi M.G., Sandri M.T., Civelli M., Cucchi G., Menatti E., Mangiavacchi M., Cavina R., Barbieri E., Gori S., Colombo A., Curigliano G., Salvatici M., Rizzo A., Ghisoni F., Bianchi A. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur. J. Cancer, 2018, vol. 94, pp. 126–137.

16. Petrova E.B., Statkevich T.V., Ponomarenko I.N., Mit’kovskaya N.P. Postinfarktnoe remodelirovanie levogo zheludochka: nekotorye patogeneticheskie aspekty [Postinfarction remodeling of the left ventricle: some pathogenetic aspects]. Voennaya medicina, 2015, no. 1, pp. 116–122. (in Russian).


Review

For citations:


Kananchuk N., Petrova E., Balysh E., Kananchuk S., Abramovich M., Smirnov S., Gutkovskaya E., Mitkovskaya N. Modern approaches to prediction and prevention of cardiotoxic effects of complex treatment of breast cancer. Emergency Cardiology and Cardiovascular Risks journal. 2022;6(2):1625-1636. (In Russ.) https://doi.org/10.51922/2616-633X.2022.6.2.1625

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2616-633X (Print)